



## Mechanical Power Clamping Nut I Series MCA-S/MCA-T

### ✓ simple & manual operation with handle ✓ fast infeed motion due to automatic changeover



clamping nut MCA-S with star handle



clamping nut MCA-T with T-handle

material:

heat treated steel - nitro carburized cover plate: high tensile aluminum

# Technical data and dimensions [mm]: length dimensions according to DIN ISO 2768 mH

| Series | nominal<br>clamping force<br>[kN] | thread<br>D*<br>(7G) | max static<br>load<br>[kN] | screw in de<br>tmin tm |       |
|--------|-----------------------------------|----------------------|----------------------------|------------------------|-------|
|        |                                   | M 10                 | 50                         |                        |       |
| MCA-S  | 40                                | M 12                 | 70                         | 40.0                   |       |
| MCA-T  |                                   | M 16                 | 120                        | 16 2                   | 4 1,0 |
|        |                                   | M 20                 | 120                        |                        |       |





### Note:

Property class of threaded bolt should be at least Q 10.9. Sizes of thread larger than M 16 should use a property class of Q 12.9, or the max. static load must be reduced. For optical control of actual screw-in depth of the T-bolt, two grooves are cut into the housing circumference matching  $t_{min}$  and  $t_{max}$ . When laying out the actual screw-in depth of the threaded bolt, the necessary stroke must be considered i.e. the max. specified screw-in depth must be reduced by at least the amount of the stroke.

#### Application example:

MCA-T-clamping nut for adjustment of test bench sliding table



Ordering example: MCA-S - M 16 / MCA-T - M 20