Dimensioning- Calculation for Power Clamping Screw MSP / MSPD

The total amount of clamping force and weight of the working piece has to be less than the value of the max. allowed static load "Fs max":

$$
F_{\text {total }}=\frac{F_{m}}{f_{n}}+F_{c} \leq F_{\mathrm{s}} \max \text { or } \quad F_{\mathrm{s}} \max -F_{\mathrm{c}}^{*} \geq \frac{F_{\mathrm{m}}}{f_{\mathrm{n}}}
$$

* Remark: The clamping force Fc should not succeed the nominal clamping force Fsn of the respective Power Clamping Screw size; reduced clamping force values are permitting a higher workpiece weight. Generally it is to say that
Fc = Fsn. Specific application factors (unbalanced mass...) have to be respected.
$\mathrm{F}_{\mathrm{c}} \rightarrow$ required clamping force per Power Clamping Screw
$\mathrm{F}_{\mathrm{sn}} \rightarrow$ nominal clamping force of the Power Clamping Scr
$\mathrm{F}_{\mathrm{s} \text { max }} \rightarrow$ max. allowed static load
$\mathrm{n} \rightarrow$ number of Power Clamping Screws per face plat
$\mathrm{f}_{\mathrm{n}} \rightarrow$ load factor (for adversial load distribution)
$\mathrm{m} \rightarrow$ weight of the workpiece $\quad[\mathrm{kg}$ bzw. to $]$
$\mathrm{F}_{\mathrm{m}} \rightarrow$ weight of workpiece in $[\mathrm{kN}]$ [1to $\left.\widehat{=} 10 \mathrm{kN}\right]$

Calculation example: max. weight of workpiece: 80 to $=800 \mathrm{kN}$; case 1: Fm $=\mathrm{m} / 2=40 \mathrm{to} \widehat{=} 400 \mathrm{kN}$; number of Power Clamping Scews: $4 \rightarrow \mathrm{fn}=1$ necessary clamping force (50% of the Fsn external) $\mathrm{Fc}=200 \mathrm{kN}$; External clamping \rightarrow series MSP
According to the clamping force - preselection of type MSP 120: Fs max - Fc = 700-200 = 500 kN and Fm /fn = 400/1=400 kN i.e. the sizing condition of $500 \mathrm{kN}>400 \mathrm{kN}$ is complied \rightarrow Sizing is OK!

